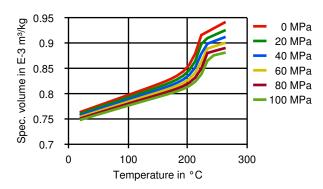


RITEFLEX® 677 - TPC

Description


Riteflex 677 is a thermoplastic polyester elastomer with	n nominal hardness of 77 shore D and high modulus.

		Unit	Test Standard
Density	1270	kg/m³	ISO 1183
Melt flow rate, MFR	15	g/10min	ISO 1133
MFR temperature	240	°C	ISO 1133
MFR load	2.16	kg	ISO 1133
Molding shrinkage, parallel	1.8 - 2.2	%	ISO 294-4, 2577
Nolding shrinkage, normal	1.7 - 2.2	%	ISO 294-4, 2577
Mechanical properties	Value	Unit	Test Standard
ensile modulus	750	MPa	ISO 527-2/1A
ensile stress at yield, 50mm/min	33	MPa	ISO 527-2/1A
ensile strain at yield, 50mm/min	18	%	ISO 527-2/1A
ensile nominal strain at break, 50mm/min	>50	%	ISO 527-2/1A
ensile stress at 50% strain, 50mm/min	26	MPa	ISO 527-2/1A
ensile stress at break, 50mm/min	42	MPa	ISO 527-2/1A
ensile strain at break, 50mm/min	>300	%	ISO 527-2/1A
Flexural modulus, 23°C	670	MPa	ISO 178
Flexural modulus, -40°C	2500	MPa	ISO 178
lexural strength, 23°C	30	MPa	ISO 178
lexural stress at 3.5% strain	23	MPa	ISO 178
Charpy impact strength, 23°C	71	kJ/m²	ISO 179/1eU
Charpy impact strength, -30°C	4.5	kJ/m²	ISO 179/1eU
Charpy notched impact strength, 23°C	9.4	kJ/m²	ISO 179/1eA
zod impact notched, 23°C	8.5	kJ/m²	ISO 180/1A
zod impact notched, -40°C	4.7	kJ/m²	ISO 180/1A
zod impact unnotched, 23°C	NB	kJ/m²	ISO 180/1U
ensile notched impact strength, +23°C	9.3	kJ/m²	ISO 8256/1
Bayshore resilience	40	%	ASTM D 2632
Mechanical properties (TPE)	Value	Unit	Test Standard
ensile stress at 5% strain, 1BA	32	MPa	ISO 527-1, -2
ensile stress at 10% strain, 1BA	36	MPa	ISO 527-1, -2
ensile stress at 50% strain, 1BA	26	MPa	ISO 527-1, -2
Shore D hardness, 15s	75	-	ISO 868
ear strength, Die C/parallel	250	kN/m	ISO 34-1
hermal properties	Value	Unit	Test Standard
Melting temperature, 10°C/min	218	°C	ISO 11357-1/-3
OTUL at 1.8 MPa	51	°C	ISO 75-1, -2
TUL at 0.45 MPa	109	°C	ISO 75-1, -2
/icat softening temperature, 50°C/h 10N	213	°C	ISO 306
Coeff. of linear therm expansion, parallel	1.4	E-4/°C	ISO 11359-2
lammability at thickness h	НВ	class	UL 94
thickness tested (h)	1.50	mm	UL 94
Electrical properties	Value	Unit	Test Standard
Relative permittivity, 1MHz	3.3	-	IEC 60250
Dissipation factor, 1MHz	400	E-4	IEC 60250
/olume resistivity	4E14	Ohm*m	IEC 60093
		Ohm	IEC 60093
	2E17	Onn	ILC 00093
Surface resistivity Electric strength	2E17 16	kV/mm	IEC 60093

RITEFLEX® 677 - TPC

Diagrams

Moldflow Specific volume-temperature (pvT)

Typical injection moulding processing conditions

Pre Drying	Value	Unit	Test Standard
Necessary low maximum residual moisture content	0.05	%	-
Drying time	4	h	-
Drying temperature	100 - 110	°C	-
Temperature	Value	Unit	Test Standard
Hopper temperature	20 - 50	°C	-
Feeding zone temperature	230 - 240	°C	-
Zone1 temperature	230 - 240	°C	-
Zone2 temperature	235 - 250	°C	-
Zone3 temperature	235 - 250	°C	-
Zone4 temperature	240 - 260	°C	-
Nozzle temperature	240 - 260	°C	-
Melt temperature	235 - 265	°C	-
Mold temperature	20 - 55	°C	-
Hot runner temperature	235 - 260	°C	-
Speed	Value	Unit	Test Standard
Injection speed	medium-fast	-	-

Other text information

Pre-drying

To avoid hydrolytic degradation during processing, Riteflex resins have to be dried to a moisture level equal to or less than 0.05%. Drying should be done in a dehumidifying hopper dryer capable of dewpoints <-40°F (-40°C) at 230°F (110°C) for 4 hours.

Longer pre-drying times/storage

For subsequent storage of the material in the dryer until processed (<= 60 h) it is necessary to lower the temperature to 100° C.

Injection molding

Rear Temperature 450-470(230-240) deg F (deg C) Center Temperature 460-480(235-250) deg F (deg C) Front Temperature 470-490(240-255) deg F (deg C) Nozzle Temperature 480-490(250-255) deg F (deg C) Melt Temperature 460-490(235-255) deg F (deg C) Mold Temperature 100-200(40-95) deg F (deg C) Back Pressure 0-50 psi Screw Speed Medium Injection Speed Fast

Injection speed, injection pressure and holding pressure have to be optimized to the individual article geometry. To avoid material degradation during processing low back pressure and minimum screw speed have to be used. Overheating of the material has to be avoided, in particular for flame retardant grades. Up to 25% clean and dry regrind may be used.

RITEFLEX® 677 - TPC

Characteristics

Product Categories Processing

Unfilled Injection molding

General Disclaimer

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colorants or other additives may cause significant variations in data values. Properties of molded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users seek and adhere to the manufacturer's current instructions for handling each material they use, and entrust the handling of such material to adequately trained personnel only. Please call the telephone numbers listed for additional technical information. Call Customer Services for the appropriate Materials Safety Data Sheets (MSDS) before attempting to process our products. The products mentioned herein are not intended for use in medical or dental implants.

Trademark

© 2014 Celanese or its affiliates. All rights reserved. (Published 27.July.2016). Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.